Iranian Journal of Mathematical Sciences and Informatics

Vol. 13, No. 1 (2018), pp 103-110
DOI: 10.7508/ijmsi.2018.1.010

Atomic Systems in 2-inner Product Spaces

Bahram Dastourian, Mohammad Janfada*
Department of Pure Mathematics
Ferdowsi University of Mashhad
Mashhad, 1159-91775, Iran
E-mail: bdastorian@gmail.com
E-mail: mjanfada@gmail.com

Abstract

In this paper, the concept of a family of local atoms in a 2 -inner product space is introduced and then this concept is generalized to an atomic system for an operator. Next a characterization of atomic systems is proved. This characterization lead us to obtain a new frame which is a generalization of frames in 2-inner product spaces.

Keywords: 2-inner product space, 2-normed space, Family of local atoms, Atomic system, Frame.

2000 Mathematics subject classification: $42 \mathrm{C} 15,46 \mathrm{C} 50$.

1. Introduction and Preliminaries

Frames in Hilbert spaces were introduced by Duffin and Schaffer [9] in the context of nonharmonic Fourier series in 1952. In 1986, frames were brought to life by Daubechies et al. [7]. Now frames play an important role not only in the theoretics but also in many kinds of applications, and have been widely applied in signal processing [13], sampling [10, 11], coding and communications [19], filter bank theory [2], system modeling [8], and so on.

Atomic systems for bounded linear operators on Hilbert spaces have been introduced by L. Găvruţa in [15] as a generalization of families of local atoms

[^0][12]. A sequence $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ in a Hilbert space \mathcal{H} is called an atomic system for a bounded linear operator K on \mathcal{H} if
i) the series $\sum_{j \in \mathbb{N}} c_{j} f_{j}$ converges for all $c=\left(c_{j}\right) \in l^{2}:=\left\{\left\{b_{j}\right\}_{j \in \mathbb{N}}: \sum_{j \in \mathbb{N}}\left|b_{j}\right|^{2}<\right.$ ∞ \};
ii) there exists $C>0$ such that for every $f \in \mathcal{H}$ there exists $a_{f}=\left(a_{j}\right) \in l^{2}$ such that $\left\|a_{f}\right\|_{l^{2}} \leq C\|f\|$ and $K f=\sum_{j \in \mathbb{N}} a_{j} f_{j}$.
It is proved that this concept is equivalent to K-frames, where K is a bounded linear operator on separable Hilbert space \mathcal{H} [15].
A sequence $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ is said to be a K-frame for \mathcal{H} if there exist constants $A, B>0$ such that
$$
A\left\|K^{*} f\right\|^{2} \leq \sum_{j \in \mathbb{N}}\left|\left\langle f, f_{j}\right\rangle\right|^{2} \leq B\|f\|^{2}, \forall f \in \mathcal{H}
$$

We refer to [20] for more results on these concepts. In addition, the authors generalized these concepts and gave some new results in Hilbert modules [5] and Banach spaces [6]. Note that frames in Hilbert spaces are just a particular case of K-frames, when K is the identity operator on these Hilbert spaces.

The concepts of 2 -inner product spaces and 2-normed spaces have been studied by many authors $[3,4,14,16,17,18]$. In the sequel, we introduce 2 -inner product and 2-normed spaces.

Definition 1.1. Suppose that X is a vector space of dimension grater than 1 over the field $\mathbb{F}($ either \mathbb{R} or $\mathbb{C})$. If there exists a mapping $\langle., . \mid\rangle:. X \times X \times X \rightarrow \mathbb{F}$ with the properties

1. $\langle f, f \mid h\rangle \geq 0$ and $\langle f, f \mid h\rangle=0$ if and only if f and h are linearly dependent;
2. $\langle f, f \mid h\rangle=\langle h, h \mid f\rangle$;
3. $\langle g, f \mid h\rangle=\overline{\langle f, g \mid h\rangle}$;
4. $\langle\alpha f, g \mid h\rangle=\alpha\langle f, g \mid h\rangle$ for $\alpha \in \mathbb{F}$;
5. $\left\langle f_{1}+f_{2}, g \mid h\right\rangle=\left\langle f_{1}, g \mid h\right\rangle+\left\langle f_{2}, g \mid h\right\rangle$,
then the pair $(X,\langle., . \mid\rangle$.$) is called a 2$-inner product space. The map $\langle., . \mid$.$\rangle is$ said to be a 2-inner product on X.

Some basic properties of 2-inner product $\langle.$, .|. \rangle cane be immediately obtained as follows (see $[3,4]$).

- $\langle 0, g \mid h\rangle=\langle f, 0 \mid h\rangle=\langle f, g \mid 0\rangle=0 ;$
- $\langle f, \alpha g \mid h\rangle=\bar{\alpha}\langle f, g \mid h\rangle$;
- $\langle f, g \mid \alpha h\rangle=|\alpha|^{2}\langle f, g \mid h\rangle ;$
for all $f, g, h \in X$ and $\alpha \in \mathbb{F}$.
One of the most important properties of 2-inner product is the Cauchy-Schwarz inequality

$$
|\langle f, g \mid h\rangle|^{2} \leq\langle f, f \mid h\rangle\langle g, g \mid h\rangle, \quad f, g, h \in X
$$

For a given 2-inner product space $(X,\langle., . \mid\rangle$.$) we can define a function \|.,$. on $X \times X$ by

$$
\begin{equation*}
\|f, h\|=\langle f, f \mid h\rangle^{\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

for all $f, h \in X$.
The above mentioned function satisfies the following conditions:
a. $\|f, h\| \geq 0$ and $\|f, h\|=0$ if and only if f and h are linearly dependent;
b. $\|f, h\|=\|h, f\|$;
c. $\|\alpha f, h\|=|\alpha|\|f, h\|, \alpha \in \mathbb{F}$;
d. $\left\|f_{1}+f_{2}, h\right\| \leq\left\|f_{1}, h\right\|+\left\|f_{2}, h\right\|$.

A 2-norm on a vector space X is a function $\|.,$.$\| defined on X \times X$ satisfying the conditions (a) to (d) and ($X,\|.,$.$\|) is called a linear 2-normed space.$ Whenever a 2 -inner product space $(X,\langle., . \mid\rangle$.$) is given, we consider it as a linear$ 2 -normed space $(X,\|.,\|$.$) via the 2$-norm defined by (1.1).

Let X be a 2 -inner product space. A sequence $\left\{f_{j}\right\}$ is called convergent if there exists $f \in X$ such that $\lim _{j \rightarrow \infty}\left\|f_{j}-f, h\right\|=0$, for all $h \in X$. Similarly, we can define a Cauchy sequence in X. Also, X is said to be a 2-Hilbert space if it is complete (see [18]).

Now we are ready to state the concept of a 2-frame which was introduced in [1]. A sequence $\left\{f_{j}\right\}$ in a 2 -Hilbert space $(X,\langle., . \mid\rangle$.$) is called a 2$-frame associated to $h \in X$ if there exist $A, B>0$ such that

$$
\begin{equation*}
A\|f, h\|^{2} \leq \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} \leq B\|f, h\|^{2}, \forall f \in X \tag{1.2}
\end{equation*}
$$

If the right side of (1.2) holds, then $\left\{f_{j}\right\}$ is called a 2 -Bessel sequence.
In this paper, we shall introduce 2-atomic systems as a generalization of families of local 2-atoms. A characterization of 2-atomic systems is given. This leads us to obtain a generalization of 2-frame.

2. Main Results

In this section we are going to define the concept of a family of local 2-atoms. Next we will generalize this concept to a 2 -atomic system for a linear operator and then a generalization of 2-frames will be studied.

In the sequel we assumed that $(X,\langle., . \mid\rangle$.$) is a 2$-Hilbert space, $h \in X$ and $\langle h\rangle$ is the subspace generated by h.

Definition 2.1. Let $\left\{f_{j}\right\}$ be a 2 -Bessel sequence in a 2 -inner product space X, $h \in X$ and Y be a closed subspace of X. We say that $\left\{f_{j}\right\}$ is a family of local 2-atoms for Y associated to h if there exists a sequence of bilinear functionals $\left\{c_{j}\right\}$ on $X \times\langle h\rangle$ such that
i) $\sum_{j}\left|c_{j}(f, h)\right|^{2} \leq C\|f, h\|^{2}$, for some $C>0$;
ii) $f=\sum_{j} c_{j}(f, h) f_{j}$,
for all $f \in Y$.

Note that a map $c_{j}: X \times\langle h\rangle \rightarrow \mathbb{F}$ is called a bilinear functional if the following conditions hold for every $f, g \in X$ and $\alpha \in \mathbb{F}$.
(i) $c_{j}(\alpha f+g, h)=\alpha c_{j}(f, h)+c_{j}(g, h)$;
(ii) $c_{j}(f, \alpha h)=\alpha c_{j}(f, h)$.

In the following proposition, it is proved that every family of local 2-atoms is indeed a 2-frame sequence.

Proposition 2.2. Suppose that $\left\{f_{j}\right\}$ is a family of local 2-atoms for Y, a closed subspace of 2-inner product space X, then $\left\{f_{j}\right\}$ is a 2-frame for Y associated to h.

Proof. It is enough to show that $\left\{f_{j}\right\}$ has a lower bound. Since $\left\{f_{j}\right\}$ is a family of local 2-atoms, there exists a sequence of bilinear functionals $\left\{c_{j}\right\}$ such that $\sum_{j}\left|c_{j}(f, h)\right|^{2} \leq C\|f, h\|^{2}, f \in Y$, for some $C>0$.

$$
\begin{aligned}
\|f, h\|^{4} & =(\langle f, f \mid h\rangle)^{2} \\
& =\left(\left\langle f, \sum_{j} c_{j}(f, h) f_{j} \mid h\right\rangle\right)^{2} \\
& =\left(\sum_{j} \overline{c_{j}(f, h)}\left\langle f, f_{j} \mid h\right\rangle\right)^{2} \\
& \leq \sum_{j}\left|c_{j}(f, h)\right|^{2} \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} \\
& \leq C\|f, h\|^{2} \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2},
\end{aligned}
$$

it means that $\frac{1}{C}\|f, h\|^{2} \leq \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2}$.
Assume that $(X,\langle., ., ;\rangle$.$) is a 2$-Hilbert space and $h \in X$. The algebraic complement of $\langle h\rangle$ in X is denoted by M_{h}, i.e. $\langle h\rangle \oplus M_{h}=X$.

One may see that

$$
\langle f, g\rangle_{h}=\langle f, g \mid h\rangle, f, g \in X
$$

defines a semi-inner product on X (see [1]). This semi-inner product induces the following inner product on the quotient space $\frac{X}{\langle h\rangle}$ denoted by M_{h} as follows:

$$
\langle f+\langle h\rangle, g+\langle h\rangle\rangle_{h}=\langle f, g\rangle_{h}, f, g \in X
$$

So M_{h} with respect to $\|f\|_{h}:=\sqrt{\langle f, f\rangle_{h}}, f \in M_{h}$, is a normed space. The completion of the inner product space M_{h} is denoted by X_{h}.
With these notations, one can rewrite (1.2) as follows:

$$
A\|f\|_{h}^{2} \leq \sum_{j}\left|\left\langle f, f_{j}\right\rangle_{h}\right|^{2} \leq B\|f\|_{h}^{2}, \forall f \in X_{h}
$$

Now we are going to generalize the concept of a family of local 2-atoms.
Definition 2.3. Let X be a 2-inner product space and fix $h \in X$. Let K_{h} be a bounded linear operator on the Hilbert space X_{h}. A sequence $\left\{f_{j}\right\} \subseteq X$ is
called a 2-atomic system for K_{h} associated to h if
i) $\left\{f_{j}\right\}$ is a 2 -Bessel sequence;
ii) for any $f \in X_{h}$ there exists $a_{f}=\left\{a_{j}\right\} \in \ell^{2}$ such that $K_{h} f=\sum_{j} a_{j} f_{j}$, where $\left\|a_{f}\right\|_{\ell^{2}} \leq C\|f, h\|_{X}$ and C is a positive constant.

Note that the convergence of the series $\sum_{j} a_{j} f_{j}$ is in the topology of X. Also if $\left\{f_{j}\right\} \subseteq X_{h}$ then the convergence of the series $\sum_{j} a_{j} f_{j}$ is in the topology of X implies its convergence in X_{h}.

A characterization of a 2 -atomic system corresponding to $h \in X$ is given as follows which lead us to obtain a generalization of 2-frame.

Theorem 2.4. Let K_{h} be a bounded linear operator on X_{h}. Then for a sequence $\left\{f_{j}\right\} \subseteq X_{h}$ the following statements are equivalent:
(i) $\left\{f_{j}\right\}$ is a 2-atomic system for K_{h};
(ii) there exist $A, B>0$ such that

$$
A\left\|K_{h}^{*} f\right\|_{h}^{2} \leq \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} \leq B\|f\|_{h}^{2}, \forall f \in X_{h}
$$

(iii) $\left\{f_{j}\right\} \subseteq X_{h}$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\left\{g_{j}\right\}$ such that

$$
K_{h} f=\sum_{j}\left\langle f, g_{j} \mid h\right\rangle f_{j}, f \in X_{h}
$$

(iv) $\left\{f_{j}\right\} \subseteq X_{h}$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\left\{g_{j}\right\}$ such that

$$
K_{h}^{*} f=\sum_{j}\left\langle f, f_{j} \mid h\right\rangle g_{j}, f \in X_{h}
$$

(v) $\left\{Q_{h} f_{j}\right\}$ is a 2-atomic system for the bounded linear operator $Q_{h} K_{h}$, where Q_{h} is an injective operator on X_{h}.

Proof. $i \rightarrow i i$) For every $f \in X_{h}$ we have

$$
\begin{aligned}
\left\|K_{h}^{*} f\right\|^{2} & =\left\|K_{h}^{*} f, h\right\|^{2} \\
& =\sup \left\{\left|\left\langle K_{h}^{*} f, g \mid h\right\rangle\right|^{2}: g \in X_{h},\|g, h\|=1\right\} \\
& =\sup \left\{\left|\left\langle f, K_{h} g \mid h\right\rangle\right|^{2}: g \in X_{h},\|g, h\|=1\right\}
\end{aligned}
$$

By definition of a 2-atomic system for K_{h}, there exists $C>0$ such that $K_{h} g=$ $\sum_{j} b_{j} f_{j}$ with $\left\|b_{g}\right\|_{\ell^{2}}=\left\|\left\{b_{j}\right\}\right\|_{\ell^{2}} \leq C\|g, h\|$ and so

$$
\begin{aligned}
\left\|K_{h}^{*} f\right\|^{2} & =\sup \left\{\left|\left\langle f, \sum_{j} b_{j} f_{j} \mid h\right\rangle\right|^{2}: g \in X_{h},\|g, h\|=1\right\} \\
& =\sup \left\{\left|\sum_{j} \overline{b_{j}}\left\langle f, f_{j} \mid h\right\rangle\right|^{2}: g \in X_{h},\|g, h\|=1\right\} \\
& \leq \sup \left\{\sum_{j}\left|b_{j}\right|^{2} \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2}: g \in X_{h},\|g, h\|=1\right\} \\
& \leq C^{2}\|g, h\|^{2} \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} \\
& =C^{2} \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} .
\end{aligned}
$$

It means that $\frac{1}{C^{2}}\left\|K_{h}^{*} f\right\|^{2} \leq \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2}$.
ii \rightarrow iii) Similar to Theorem 3 of [15], there exists a 2 -Bessel sequence $\left\{g_{j}\right\} \in X_{h}$ such that

$$
K_{h} f=\sum_{j}\left\langle f, g_{j}\right\rangle_{h} f_{j}=\sum_{j}\left\langle f, g_{j} \mid h\right\rangle f_{j}
$$

$i i i \rightarrow i v)$ For $f, g \in X_{h}$ we have

$$
\begin{aligned}
\left\langle K_{h} f, g\right\rangle_{h} & =\left\langle\sum_{j}\left\langle f, g_{j} \mid h\right\rangle f_{j}, g\right\rangle_{h} \\
& =\sum_{j}\left\langle f, g_{j} \mid h\right\rangle\left\langle f_{j}, g \mid h\right\rangle \\
& =\sum_{j}\left\langle f, g_{j}\right\rangle_{h}\left\langle f_{j}, g\right\rangle_{h} \\
& =\left\langle f, \sum_{j}\left\langle g, f_{j} \mid h\right\rangle g_{j}\right\rangle_{h}
\end{aligned}
$$

that is $K_{h}^{*} f=\sum_{j}\left\langle f, f_{j} \mid h\right\rangle g_{j}$.
$i v \rightarrow i i i)$ It is similar to $i i i \rightarrow i v$ so we omit it.
$i \rightarrow v$) Since $\left\{f_{j}\right\}$ is a 2-atomic system for K_{h}, for any $f \in X_{h}$ there exists $a_{f}=\left\{a_{j}\right\} \in \ell^{2}$ such that $K_{h} f=\sum_{j} a_{j} f_{j}$ so $Q_{h} K_{h} f=\sum_{j} a_{j} Q_{h} f_{j}$, i.e. $\left\{Q_{h} f_{j}\right\}$ is a 2 -atomic system for $Q_{h} K_{h}$.
$v \rightarrow i$) Since $\left\{Q_{h} f_{j}\right\}$ is a 2-atomic system for $Q_{h} K_{h}$, for any $f \in X_{h}$ there exists $\left\{b_{j}\right\} \in \ell^{2}$ such that $Q_{h} K_{h} f=\sum_{j} b_{j} Q_{h} f_{j}$ so $Q_{h}\left(K_{h} f-\sum_{j} b_{j} f_{j}\right)=0$. Due to injectivity of $Q_{h}, K_{h} f=\sum_{j} b_{j} f_{j}$.

As a result of Theorem 2.4 the following definition is given.

Definition 2.5. Let K_{h} be a bounded linear operator on X_{h}. A sequence $\left\{f_{j}\right\}$ in X is called 2 - K-frame if there exist $A, B>$ such that

$$
A\left\|K_{h}^{*} f\right\|_{h}^{2} \leq \sum_{j}\left|\left\langle f, f_{j} \mid h\right\rangle\right|^{2} \leq B\|f\|_{h}^{2}, \forall f \in X_{h}
$$

Trivially a 2 -frame, which was defined in [1], is a special case of 2 - K-frames with $K_{h}=I$.
A consequence of Theorem 2.4 is given as follows.
Theorem 2.6. Let $P_{Y_{h}}$ be the orthogonal projection on Y_{h} as a closed subspace of X_{h}. Then for a sequence $\left\{f_{j}\right\} \subseteq X_{h}$ the following statements are equivalent:
(i) $\left\{f_{j}\right\}$ is a family of local 2-atoms for Y_{h};
(ii) $\left\{f_{j}\right\}$ is a 2-atomic system for $P_{Y_{h}}$;
(iii) $\left\{f_{j}\right\}$ is a $2-P_{Y_{h}}$-frame;
(iv) $\left\{f_{j}\right\}$ is a 2-Bessel sequence and there exists a 2-Bessel sequence $\left\{g_{j}\right\}$ such that

$$
P_{Y_{h}} f=\sum_{j}\left\langle f, g_{j} \mid h\right\rangle f_{j}=\sum_{j}\left\langle f, f_{j} \mid h\right\rangle g_{j}, f \in X_{h}
$$

(v) $\left\{Q_{h} f_{j}\right\}$ is a 2-atomic system for bounded linear operator $Q_{h} P_{Y_{h}}$, where Q_{h} is an injective operator on X_{h}.

Proof. $i \rightarrow i i$ is obvious.
$i i \longleftrightarrow i i i, i i i \longleftrightarrow i v, i v \longleftrightarrow i i$ and $v \longleftrightarrow i$ hold from Theorem 2.4.
$i v \rightarrow i)$ Since $P_{Y_{h}} f=\sum_{j}\left\langle f, g_{j} \mid h\right\rangle f_{j}$, it is enough to put $c_{j}(f, h)=\left\langle f, g_{j} \mid h\right\rangle$ because it is linear and

$$
\sum_{j}\left|c_{j}(f, h)\right|^{2}=\sum_{j}\left|\left\langle f, g_{j} \mid h\right\rangle\right|^{2} \leq D\|f, h\|^{2}
$$

where D is the upper 2-frame bound of $\left\{g_{j}\right\}$.
Example 2.7. Let $n \in \mathbb{N}$ be odd and consider $X=\mathbb{R}^{n}$ with the following standard two inner product

$$
\langle x, y \mid z\rangle=\operatorname{det}\left(\begin{array}{ll}
\langle x, y\rangle & \langle x, z\rangle \\
\langle z, y\rangle & \langle z, z\rangle
\end{array}\right)
$$

where $\langle.,$.$\rangle is the inner product of \mathbb{R}^{n}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n} and $h=e_{n}$. Trivially in this case $X_{h}=\mathbb{R}^{n-1}$ and one can see that its induced inner product is the standard inner product of \mathbb{R}^{n-1}. Now define the operator K_{h} on X_{h} by

$$
K_{h}\left(e_{2 i}\right)=e_{i}, i=1,2, \ldots, \frac{n-1}{2} \text { and otherwise } K_{h} e_{i}=e_{i}, i \leq n-1
$$

Then one can see that $e_{1}, e_{1}, e_{3}, e_{2}, \ldots, e_{\frac{n-1}{2}}, e_{n-1}$ is a 2 - K_{h}-frame.

Acknowledgments

The authors wish to thank the anonymous reviewers for their specific and useful comments.

References

1. A. A. Arefijamaal, Gh. Sadeghi, Frames in 2-inner product spaces, Iran. J. Math. Sci. Inform., 8(2), (2013), 123-130.
2. H. Bolcskei, F. Hlawatsch, H. G. Feichtinger, Frame-theoretic analyssis of oversampled filter banks, IEEE Trans. Signal Process., 46, (1998), 3256-3268.
3. Y. J. Cho, P. C. S. Lin, S. S. Kim, A. Misiak, Theorey of 2-inner Product Spaces, Nova Science Publishers, Inc., New York, 2001.
4. Y. J. Cho, M. Matic, J. E. Pecaric, On Gram's deteminant in 2-inner product spaces, J. Korean Math. Soc., 38(4), (2001), 1125-1156.
5. B. Dastourian, M. Janfada, *-frames for operators on Hilbert modules, Wavelets and Linear algebras., 3, (2016), 27-43.
6. B. Dastourian, M. Janfada, Frames for operators in Banach spaces via semi-inner products, Int. J. Wavelets Multiresult. Inf. Process., 14(3), (2016), 1650011 (17 pages).
7. I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27, (1986), 1271-1283.
8. N. E. Dudey Ward, J. R. Partington, A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim. 36, (1998), 654-679.
9. J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72, (1952), 341-366.
10. Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier. Anal. Appl. 9(1), (2003), 77-96.
11. Y. C. Eldar, T. Werther, General framework for consistent sampling in Hilbert spaces, Int. J. Wavelets Multiresult. Inf. Process. 3(3), (2005), 347-359.
12. H.G. Feichtinger, T. Werther, Atomic systems for subspaces, in: L. Zayed (Ed.), Proceedings SampTA, (2001), Orlando, FL, (2001), 163-165.
13. P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J.S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam (1999), 35-54.
14. S. Gahler, Linear 2-normierte Raume, Math. Nachr., 28, (1965), 1-43.
15. L. Găvruţa, Frames for operators, Appl. Comput. Harmon. Anal., 32, (2012), 139-144.
16. S. M. Gozali, H. Gunawan, On b-orthogonality in 2-normed spaces, J. Indones. Math. Soc. 16(2), (2010), 127-132.
17. H. Gunawan, Inner products on n-inner product spaces, Soochow J. Math. 28(4), (2002), 389-398.
18. Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III, $39(59)$, (2004), 301-312.
19. T. Strohmer, R. Jr. Heath, Grassmanian frames with applications to coding and communications, Appl. Comput. Harmon. Anal., 14, (2003), 257-275.
20. X. Xiao, Y. Zhu, L. Găvruţa, Some Properties of K-Frames in Hilbert Spaces, Results. Math., 63(3-4), (2013), 1243-1255.

[^0]: * Corresponding Author

 Received 06 September 2016; Accepted 11 November 2017
 (c)2018 Academic Center for Education, Culture and Research TMU

